

2024年度ウェブプログラミング実習
総合実習レポート

（リアルタイム議事録）

班番号 B 研究室

名

宮下研

組 3 番号 45

氏名 松島陽也

提出日時 1/22

共同実習者名 菅生遥叶

吉川榮春

春日裕次

1.作成概要

本システム「リアルタイム議事録」はユーザ同士のテキストチャットから、チャット内容に関

する議事録を生成するシステムである。本システムの特徴は、議事録をチャット画面から生成

できる利便性と、議事録生成における抽出項目をユーザの任意で設定できる自由度の高さ

にある。本システムを開発するにあたり、利用者のターゲットはリモートによる会議を行う人に

絞り、利用場面は、テキストチャットを使用した会議を想定した。

システムの基本的な動作について、図 1より、まずユーザはログインまたは新規登録のど

ちらかを選択し、ログイン画面（図 2）あるいは新規登録画面（図 3）に遷移する。ログイン画面

では、ユーザ名とパスワードを入力し、chat.sqliteに保管されているユーザ名とパスワードが

一致すれば、ログイン完了となる。新規登録画面では、ユーザ名とパスワードを新しく設定す

る。設定が完了すると、ユーザはログイン完了となり、入力したアカウント情報は新たに

chat.sqliteに保存され、次回ログイン時に参照される。

図１：index.html

図２：login_form.php 図 3：register_form.php

図 4：top_page.php

ログインまたは新規登録ののち、図 4のトップページへと遷移する。図 4より、ユーザは

「ルームに参加」または「ルームを作成」を選択後、それぞれルーム参加ページ（図 5）、ルー

ム作成ページ（図 6）に遷移する。

図 5：room_join_form.php 図 6：room_create_form.php

図 5のルーム参加画面では、ルーム名とあいことばを入力する。ルーム名とあいことばが

chat.sqliteのものと一致すれば、現在開かれている、あるいは過去に開かれたルームへの参

加が可能となる。図 6のルーム作成画面では、ルーム名とあいことばを新たに設定し、ルー

ムを作成する。この際、入力されたルーム名とあいことばは新たに chat.sqliteに書き込まれ、

ルーム参加の際に参照される。

図 7：chat.html

図７はルームページである。チャット画面、抽出項目選択画面、議事録生成画面で構成さ

れており、ここで他のユーザとチャットから議事録生成まで行える。

チャット画面はユーザ同士の会話が非同期通信で表示され、テキストでのチャット入力がで

きる。抽出項目画面では ChatGPT-4にチャット内容から要約してほしい項目をユーザが複数

入力する。要約画面では ChatGPT-4が要約項目に沿った内容を要約する。要約画面には

要約削除と会話削除のボタンが存在する。要約と会話内容はデータベースに書き込まれる。

会話内容と要約は既存のルームに参加した際に、データベースから読み込まれ、表示され

る。要約削除と会話削除では、データベースから会話履歴、要約が削除される。

図２はシステム全体の画面遷移図である。

図８：システム全体の画面遷移図

 図９は chat.php における ER 図を示している。

図９：chat.php における ER 図

 図１０～１４は chat.sqlite の各テーブルのスキームを表している。

図１０：userテーブルのスキーム

図１１：sqlite_sequenceテーブルのスキーム

図１２：roomテーブルのスキーム

図１３：messagesテーブルのスキーム

図１４：summariesテーブルのスキーム

2.担当箇所

表 1：担当箇所の表

項目 担当者 備考

サーバ、利用者管

理

春日、菅生 PHP のプログラミング、ログイン処理

ユーザインタフェー

ス

菅生、吉川、

松島

CSS作成、議事録抽出項目入力欄、チャッ

ト画面作成

通信機能 松島 PHP・JSのプログラミング

議事録生成機能 吉川 GPT リクエストデータ作成

プレゼンテーション 松島、吉川、

春日

スライド作成・発表

画面遷移図、ER 図

作成

松島、菅生、

春日

画面遷移図作成、プログラム作成時の設計

図、ER 図

データベース 春日 SQLの設計、更新、ルームデータの読み込

み、保存

自分は表１にある通り、PHP・JSのプログラミングとプレゼンテーションスライドの作

成・発表、画面遷移図の作成を行った。編集したプログラムを編集箇所が多い順に並

べると、Chat.js, Chat.php, Chat.html となる。

本システムにおいて、私が担当したのは非同期処理の実装に関する全ての部分で

ある。これらのプログラムにより、非同期処理システムを実装し、ポーリング方式で通

信を行うようにした。以下に、実装の詳細を説明する。

2.1.非同期処理の概要

非同期処理とは、ある処理の完了を待たずに次の処理を実行できる仕組みであ

る。本システムでは、ユーザインタフェースの応答性向上と長時間かかる処理のバッ

クグラウンド実行、リアルタイムなデータ更新の実現を目的として非同期処理を導入

した。

2.2.実装方法

非同期処理の実装には、JavaScript の Async/Await構文を使用した。これによ

り、コードの可読性を保ちつつ、複雑な非同期処理を実現した。以下に、システムの

中核となる非同期関数の例を示す。

async function Update() {

 try {

 const response = await fetch('chat.php', {

 method: 'POST',

 headers: {

 'Content-Type': 'application/json',

 },

 body: JSON.stringify({ action: 'get_update' })

 });

 const data = await response.json();

 if (data.success) {

 messagesDiv.innerHTML = '';

 data.messages.forEach(displayMessage);

 } else {

 console.error(data.error || '更新に失敗しました。');

 }

 } catch (error) {

 console.error('エラー:', error);

 }

}

この関数は、100 ミリ秒ごとに実行され、サーバから最新のメッセージを取得し、表

示を更新する。

また、ポーリング方式による通信を実現するため、`setInterval`関数を使用して定

期的に`Update`関数を呼び出している：

setInterval (Update, 100);

この実装により、クライアントは 100 ミリ秒ごとにサーバに新しいメッセージがない

か問い合わせる。

2.3.エラーハンドリング

非同期処理におけるエラーハンドリングは、try-catch文を使用して実装した。各非

同期関数内でエラーが発生した場合、適切にキャッチし、コンソールにエラーを出力

するとともに、必要に応じてユーザにアラートを表示する。

2.4.パフォーマンス最適化

非同期処理の導入により、システム全体のパフォーマンスが向上した。具体的に

は、メッセージ送信や要約生成などの処理をバックグラウンドで実行可能にし、ユー

ザインタフェースのブロッキングを防止するとともに、リアルタイムなデータ更新による

即時性を向上させた。

特に、`updateSummary`関数では、長時間かかる可能性のある要約生成処理を非

同期で行うことで、ユーザエクスペリエンスの低下を防いでいる。

2.5.セキュリティ対策

非同期通信におけるセキュリティ対策として、以下の措置を講じた。クロスサイトス

クリプティング対策として、ユーザ入力のエスケープ処理を行い、CSRF対策として、

セッション管理を実装した。

2.6.苦労した点

非同期処理の実装において、いくつかの困難に直面した。まず、非同期通信特有

のエラーパターンへの対応に苦心した。ネットワークエラーやタイムアウトなどの問題

に適切に対処するため、エラーハンドリング機構の設計と実装に多くの時間を費やし

た。try-catch文を効果的に配置し、ユーザに分かりやすくエラーメッセージを表示す

る仕組みを構築するのは容易ではなかった。

次に、ポーリング方式による頻繁な通信がサーバに与える負荷を最小限に抑えつ

つ、リアルタイム性を確保するバランスを取るのに苦労した。適切なポーリング間隔

の設定や、必要最小限のデータのみを転送する最適化を行うことで、この課題に取り

組んだ。

非同期処理のデバッグは同期処理と比べて複雑で、エラーの原因特定に時間を要

した。特に、タイミング依存のバグの再現と修正には多大な労力を要した。これらの問

題に対処するため、綿密なテストケースの設計と実行を行った。

最後に、非同期処理によるデータ更新をユーザにどのように提示するかという点で

苦心した。新しいメッセージの到着をスムーズに表示しつつ、ユーザの現在の操作を

妨げないインターフェースの設計に腐心した。ユーザエクスペリエンスを損なわずにリ

アルタイムな情報更新を実現するため、様々なアプローチを試行錯誤した。

2.7.まとめ

以上が、本システムにおける非同期処理の実装の詳細である。この実装により、シ

ステムの応答性と効率性が大幅に向上し、ユーザエクスペリエンスの改善に貢献し

た。今後の課題としては、WebSocketの導入によるリアルタイム性のさらなる向上が

考えられる。

3.参考文献

1) ＊API の使用及びコード生成に使用

 OpenAI. "ChatGPT".GPT-4. (https://chatgpt.com/ ,2024年 12月参照)

2) ＊画面遷移図作成に使用

 miro.(https://miro.com/ja/, 2025年 1月参照)

3) ＊ER 図作成に使用

 lucid.(https://lucid.co/ja, 2025年 1月参照)

https://chatgpt.com/
https://miro.com/ja/
https://lucid.co/ja

